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1 Schreier’s Refinement Theorem and Nilpotent Groups

1.1 Schreier’s refinement theorem

Definition 1.1. A refinement of a subnormal series (Hi)
t
i=0 os a subnormal series (Kj)

s
j=0

usch that there exists an increasing function f : {0, . . . , t} → {0, . . . , s} with Hi = Kf(i)

for all i.

Definition 1.2. Two subnormal series (Hi)
t
i=0 and (Kj)

s
j=0 are equivalent if s = t and

there exists a permutation σ ∈ St such that Hi/Hi−1 ∼= Kσ(i)/Kσ(i)−1 for all i ∈ {1, . . . , t}

Theorem 1.1 (Schreier refinement theorem). Any two subnormal series in a group G have
equivalent refinements.

Proof. Here is the idea of the proof. If (Hi)
t
i=0 and (Kj)

s
j=0 are subnormal series, let

Nsi+j = Hi(Hi+1 ∩Kj) for all 0 ≤ i < t and 0 ≤ j < s and Nst = G. This refines (Hi).
Do the same for (Kj). To see that they are equivalent, use the butterfly (or Zassenhaus)
lemma from homework.

1.2 Nilpotent groups

Definition 1.3. The lower central series of a group G is G = G. Gi+1 = [G,Gi], where
[G,Gi] is the subgroup generated by commutators, 〈{[a, b] : a ∈ G, b ∈ Gi}〉.

Definition 1.4. A group G is nilpotent if Gn = 1 for all sufficiently large n in the lower
central series. The smallest n such that Gn+1 = 1 is the nilpotence class of G

Example 1.1. Let Ei,j(α) be the elementary matrix I + αei,j .

1. Ei,j(α)Ei,j(β) = Ei,j(α+ β).

2. If i 6= j, k 6= `, and i 6= `, then

[Ei,j(α), Ek,`(β)] =

{
Ei,`(αβ) j = k

0 j 6= k.
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3. Let U be the group of upper triangular matrices with 1s along the diagonal. Then
U = 〈{Ei,j(α) : i < j, α ∈ F}〉. U2 = U ′ is the subgroup of such matrices with 0s on
the diagonal above the main diagonal. U3 is the subgroup of such matrices with 0s
on the 2 diagonals above the main diagonal. Continuing like this, we get Un = 1.

Example 1.2. Let

G = Aff(F ) =

{[
a b
0 1

]
: a ∈ F ∗, b ∈ F

}
∼= F o F ∗,

where the subgroups in the direct product are the off-diagonal matrices (with 1s in the
diagonal) and the subgroup of diagonal matrices.[[

a 0
0 1

]
,

[
1 b
0 1

]]
=

[
1 ab
0 1

] [
1 −b
0 1

]
=

[
1 b(a− 1)
0 1

]
,

so

U =

[
1 ∗
0 1

]
= [G,G]

if F 6∼= F2. G
′′ = 1, and Gn = U for all n ≥ 2. So G is solvable but not nilpotent.

Definition 1.5. The upper central series (Zi(G))i≥0 of a group G is Z0(G) = 1,
Zi(G) = Z(G), and Gi+1(G) is the inverse simage of Z(G/Zi(G)) under the quotient map
G→ G/Zi(G).

Proposition 1.1. G is nilponent if and only if the upper central series is finite. If n is
minimal such that Gn+1 = 1, then Gn+1−i ≤ Zi(G) for all i, and Zn(G) is minimal such
that Zn(G) = G.

Proof. This is proven by induction. Here is the idea. Let G = G1 > G2 > · · · > Gn >
Gn+1 = 1. Then [G,Gn] = 1, so Gn ≤ Z(G) = Z1(G).

Example 1.3. Nilpotent groups can have different upper and lower central series. Look at
G = Z/pZ×U , where U is the set of upper triangular 4×4 matrices with 1s on the diagonal
and entries in Fp. THen G2 = U2, G3 = U3¡ and G4 = 1. Z1(G) = Z(G) = Z/pZ × U3,
Z2(G) = Z/pZ× U2, and Z3(G) = Z/pZ× U1 = G.

Proposition 1.2. Finite p-groups are nilpotent.

Proof. Let P be a finite p-group. We induct on |P | 6= 1. Then Z(P ) 6= 1, so P/Z(P )
is a p-group o smaller order so it is nilpotent. Say P = P/Z(P ) has niltpotence class
n. THen Zn(P/Z(P )) = P/Z(P ) = P . Let |pii : P → P/Zi(P ). THen Zi+1(P ) =
π−1i (Z(P/Zi(P ))) = π1

i (Z(P/(Zi(P )/Z(P )))). By induction, Zi(P )/Z(P ) = Zi−1(P ), so
this is equal to π−11 (Zi+1(P )). So the smallest j such that Zj(P ) = P is j = n+ 1.
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